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Introduction

The calculator is perfectly suited to brute force processes. Want to sum a few hundred
terms of a series? The calculator can do it almost instantly. The existence of the cal-
culator might suggest that computational leverage provided by calculus is no longer
needed. But although the arena in which leverage is required has shifted a bit, our abil-
ity to compute is still immeasurably enriched by the power of calculus. Indeed, that
power is used in the design of modern software and calculators. For instance, programs

like Maple and Mathematica compute sums like
∑10001000

k=1 1/k and
∑∞

k=1 1/k3 in the
blink of an eye. How do they do it?

The Mathematica manual [18, p. 917] reveals that Mathematica actually uses the
famous Euler–Maclaurin (E–M) formula, of which one form states that for m ≤ n,

n∑
k=m

f (k) −
∫ n

m
f (x) dx = 1

2
[ f (m) + f (n)] + 1

12

[
f ′(n) − f ′(m)

]+ ρ( f ; m, n),

where

|ρ( f ; m, n)| ≤ 1

120

∫ n

m

∣∣ f ′′′(x)
∣∣ dx .

Let us illustrate how this formula works. By setting f (x) = 1/x we get, for m ≤ n,

n∑
k=1

1

k
=
(

m−1∑
k=1

1

k
− ln m + 1

2m
+ 1

12m2

)
+
(

ln n + 1

2n
− 1

12n2

)
+ ρ(m, n),

where

|ρ(m, n)| ≤ 1

120

(
2

m3
− 2

n3

)
<

1

60m3
.

For example, |ρ(m, n)| ≤ 1.7 × 10−8 for n ≥ m ≥ 100, so

n∑
k=1

1

k
=
(

99∑
k=1

1

k
− ln 100 + 1

200
+ 1

120000

)
+
(

ln n + 1

2n
− 1

12n2

)
+ ρ(100, n)

= 0.577215664 + ln n +
(

1

2n
− 1

12n2

)
+ δ(n).

The first expression in parentheses above was truncated to nine places; the resulting
error was combined with the error ρ(100, n) to give a new error δ(n), where

|δ(n)| < 10−9 + 1.7 × 10−8 = 1.8 × 10−8
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for n ≥ 100. For n = 10001000 we read

S :=
10001000∑

k=1

1

k
= (

0.577215664 + ln 10001000
)+ δ(10001000)

and compute the first parenthesized expression to nine places. The error of this approx-
imation we combine with δ(10001000) to get a new error 	 with S =
6908.332494646 . . . + 	. Since |	| < 1.9 × 10−8, S = 6908.3324946 . . . is correct
to seven decimal places.

The E–M summation formula is among the most remarkable formulas of mathemat-
ics [15, p. 11]. In fact, neither Euler nor Maclaurin found this formula with remainder;
the first to do so was Poisson, in 1823 ([14], see also [8, p. 471] or [11, p. 521]). Since
then the E–M formula has been derived in different ways; one of the earliest deriva-
tions (1834) was presented by Jacobi [10]. Boas [3, p. 246] gave an elegant derivation
of the E–M formula using the Stieltjes integral. An elementary derivation of this for-
mula has long been known using the method of integration by parts (see Glaisher as
cited in [4]; see also [17, pp. 125, 127]). Apostol [1] presents another nice elementary
derivation of the E–M formula by the same means.

Every standard textbook in analysis contains Taylor’s formula, but few include the
E–M formula, perhaps because of its somewhat cumbersome form and its relatively
complicated derivation. In this paper we present a completely elementary derivation
of the E–M formula, which also produces Taylor’s formula. The main idea stems from
the observation that, when integrating a function whose pth derivative is more “con-
trollable” than the function itself, we may apply the method of the integration by parts
p times. If we organize this process appropriately, we obtain such interesting formulas
as Taylor’s formula and the E–M formula.

Preliminaries

For an integer n ≥ 0 and a closed interval [a, b], let Cn[a, b] denote the set of all
n-times continuously differentiable functions defined on [a, b]. The integration by
parts formula asserts that

∫ b

a
u(t) v′(t) dt = [u(t) v(t)]b

a −
∫ b

a
u′(t) v(t) dt

for u, v ∈ C1[a, b]. This is easily generalized by induction to the following elementary
but important lemma on repeated integration by parts in closed form:

Lemma. For u, v ∈ Cn[a, b],
∫ b

a
u(t) v(n)(t) dt =

[
n−1∑
i=0

(−1)i u(i)(t) v(n−1−i)(t)

]b

a

+ (−1)n

∫ b

a
u(n)(t) v(t) dt.

Example 1. To calculate
∫

x3ex dx , we substitute a = 0, b = x , u(t) := t3; v(t) :=
et ; and n = 4 into the preceding equation to obtain

∫
x3ex dx =

[
3∑

i=0

(−1)i(t3)(i) (et)(3−i)

]x

0

+ 0 + C = (
x3 − 3x2 + 6x − 6

)
ex + C.
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If we put a = 0, b = 1, and u, v ∈ Cn[0, 1] into the lemma above and then get rid
of the factors (−1)i by replacing v(t) with v(1 − t), and then cancel (−1)n, we arrive
at the basic equality

∫ 1

0
u(t) v(n)(1 − t) dt =

n−1∑
i=0

[
u(i)(0) v(n−1−i)(1) − u(i)(1) v(n−1−i)(0)

]

+
∫ 1

0
v(1 − t) u(n)(t) dt. (1)

Both Taylor’s formula and the E–M formula can be derived by judicious choices of v

in (1).

Taylor’s formula

To obtain Taylor’s formula it suffices to take for v in formula (1) a function whose
derivative vanishes to an appropriate high order. Our derivation is in two steps.

Unit increment. Let p be any nonnegative integer and u ∈ C p+1[0, 1]. In (1) we set
v(t) = t p/p! and n = p + 1. Since v(p+1)(t) ≡ 0 we have

∫ 1
0 u(t)v(p+1)(1 − t)dt = 0.

Since v( j)(t) ≡ t p− j/(p − j)! for 0 ≤ j ≤ p, we get from (1) the equality

u(0) − u(1) +
p∑

i=1

[
u(i)(0)

i ! − 0

]
+
∫ 1

0

(1 − t)p

p! u(p+1)(t) dt = 0.

Including u(0) under the summation sign produces

u(1) =
p∑

i=0

u(i)(0)

i ! + 1

p!
∫ 1

0
(1 − t)pu(p+1)(t) dt, (2)

which is Taylor’s formula for a unit increment.

Arbitrary increment. For a function f ∈ C p+1[a, b] and numbers xo and xo + h in
[a, b], we define the function u ∈ C p+1[0, 1] by u(t) = f (x0 + ht). Since u(i)(t) ≡
hi f (i)(x0 + ht) for i = 0, 1, . . . , p + 1, we obtain from (2)

f (x0 + h) = u(1) =
p∑

i=0

f (i)(x0)

i ! hi + h p+1

p!
∫ 1

0
(1 − t)p f (p+1)(x0 + ht) dt,

which is Taylor’s formula of order p with remainder.

Euler–Maclaurin formula

To obtain this formula it suffices to take for v in the identity (1) a function whose
derivative of an appropriately high order is identically equal to 1.

Connecting integrals and derivatives Let p be a positive integer, u ∈ C p[0, 1], and
v a function such that v(p)(t) ≡ 1. Then we have

∫ 1
0 u(t)dt = ∫ 1

0 u(t)v(p)(1 − t)dt , and
the formula (1) can be applied. So, we want a sequence {vk} of polynomials, such that
v

(k)
k (t) ≡ 1 for k ≥ 0. An easy approach is to put
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v0(t) := 1 and v
′
k(t) := vk−1(t) for k ≥ 1. (3)

This recursion formula does not uniquely determine the sequence {vk}, but (3) im-
plies that v( j)

p = vp− j for j = 0, 1, . . . , p, so v(p−1−i)
p = vi+1 for i = 0, 1, . . . , p − 1.

Putting this into (1) we obtain for n = p the equality

∫ 1

0
u(t) dt =

p∑
j=1

[
u( j−1)(0) v j(1) − u( j−1) (1)v j(0)

]+
∫ 1

0
vp(1−t) u(p)(t) dt. (4)

To simplify the expression in square brackets we require, in addition, that

v j(0) = v j(1) for j = 2, 3, . . . . (5a)

By (3), v j(1) − v j(0) = ∫ 1
0 v′

j (t)dt = ∫ 1
0 v j−1(t)dt for j ≥ 1, so (5a) is equivalent to

∫ 1

0
vk(t)dt = 0 for k = 1, 2, 3, . . . . (5b)

The polynomial sequence (vk) is now completely determined by (3) and (5b). For
example, (3) implies v1(t) ≡ t + C , and from (5b) we find C = −1/2, so v1(t) ≡
t − 1/2. Since v1(0) = −1/2 = −v1(1), we can rewrite (4), using (5a), in the form

u(1) =
∫ 1

0
u(t) dt +

p∑
j=1

v j(1)
[
u( j−1)(t)

]1

0
−
∫ 1

0
vp(1 − t) u(p)(t) dt. (6)

Connecting sums and integrals Our next goal is to connect summation with inte-
gration. To this end, let n and p be positive integers and let ϕ ∈ C p[0, n]. We define
functions ui by ui (t) = ϕ(i + t), for t ∈ [0, 1] and integers i = 0, 1, . . . , n − 1. Then
ui ∈ C p[0, 1] and

∑n−1
i=0 ui(1) = ∑n

i=1 ϕ(i). Now (6) implies the following equalities:

n∑
i=1

ϕ(i) =
n−1∑
i=0

{∫ 1

0
ui (t) dt +

p∑
j=1

v j(1)
[
u( j−1)

i (t)
]1

0
−
∫ 1

0
vp(1 − t) u(p)

i (t) dt

}

=
n−1∑
i=0

∫ i+1

i
ϕ(τ) dτ +

n−1∑
i=0

p∑
j=1

v j (1)
[
ϕ( j−1)(t)

]i+1

i

−
n−1∑
i=0

∫ 1

0
vp(1 − t) ϕ(p)(i + t) dt

=
∫ n

0
ϕ(τ) dτ +

p∑
j=1

v j(1)

n−1∑
i=0

[
ϕ( j−1)(t)

]i+1

i

−
n−1∑
i=0

∫ 1

0
vp(1 − t)ϕ(p)(i + t) dt

=
∫ n

0
ϕ(τ) dτ +

p∑
j=1

v j(1)
[
ϕ( j−1)(t)

]n

0
−

n−1∑
i=0

∫ 1

0
vp(1 − t) ϕ(p)(i + t) dt.
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Since v1(1) = −v1(0) = 1/2, and v j(0) = v j (1) for j ≥ 2, we can rewrite the last
equality as

n−1∑
i=0

ϕ(i) =
∫ n

0
ϕ(t) dt +

p∑
j=1

v j(0)
[
ϕ( j−1)(t)

]n

0
−

n−1∑
i=0

∫ 1

0
vp(1 − t) ϕ(p)(i + t) dt. (7)

In order to simplify the last sum in this formula we introduce periodic functions
wi (x) (i ≥ 0), defined by wi(x) := vi(x − �x�) for any real x . (Here �x� denotes
the integer part of x .) Then

wi (x) = vi(x) for 0 ≤ x < 1 and wi (x + 1) = wi(x) for x ∈ R. (8)

As 1 is the period of wi (x), we have wi(x + m) = wi(x) for x ∈ R and m ∈ Z. Sub-
stituting i + t = τ in the integrals we get

n−1∑
i=0

∫ 1

0
vp(1 − t) ϕ(p)(i + t) dt =

n−1∑
i=0

∫ 1

0
wp(−t) ϕ(p)(i + t) dt

=
n−1∑
i=0

∫ i+1

i
wp(i − τ) ϕ(p)(τ ) dτ

=
n−1∑
i=0

∫ i+1

i
wp(−τ) ϕ(p)(τ ) dτ

=
∫ n

0
wp(−τ) ϕ(p)(τ ) dτ.

Thus, from (7) we conclude

n−1∑
i=0

ϕ(i) =
∫ n

0
ϕ(t) dt +

p∑
j=1

v j(0)
[
ϕ( j−1)(t)

]n

0
−
∫ n

0
wp(−t) ϕ(p)(t) dt. (9)

Connecting Riemann sums and integrals For a function f ∈ C p[a, b] and a
positive integer n we put h = (b − a)/n and define ϕ by ϕ(t) := f (a + ht). Hence
ϕ ∈ C p[0, n], with ϕ( j)(t) = h j f ( j)(a + ht), for j = 0, 1, . . . , p, and
n−1∑
i=0

f (a + ih) =
n−1∑
i=0

ϕ(i). Now (9) becomes

n−1∑
i=0

f (a + ih) =
∫ n

0
ϕ(t) dt +

p∑
j=1

v j(0)
[
ϕ( j−1)(t)

]n

0
−
∫ n

0
wp(−t) ϕ(p)(t) dt

= 1

h

∫ b

a
f (x) dx +

p∑
j=1

v j(0)h j−1
[

f ( j−1)(t)
]a+hn

a

− h p−1

∫ b

a
wp

(
a − x

h

)
f (p)(x) dx,

or

h
n−1∑
i=0

f (a + ih) −
∫ b

a
f (x) dx =

p∑
j=1

v j(0) h j
[

f ( j−1)(x)
]b

a

− h p

∫ b

a
wp

(
a − x

h

)
f (p)(x) dx . (10)
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This is the E–M formula in terms of the chosen functions vk(x) and wk(x).
Better known than these functions are the Bernoulli polynomials Bk(x) and the

Bernoulli periodic functions Pk(x), related to vk(x) and wk(x) by

Bk (x) := k! vk(x) and Pk (x) := k!wk(x) (11)

for x ∈ R and k ≥ 0. According to (3), (5b), and (8), these functions are uniquely
determined by the conditions

B0(x) ≡ 1; B ′
k(x) ≡ k Bk−1(x);

∫ 1

0
Bk(x) dx = 0 (12)

for k ≥ 1, and by

Pk(x) ≡ Bk(x) on [0, 1) and Pk(x + 1) ≡ Pk(x) on R (13)

for all k ≥ 0.
We can derive from (12) the first eight nonconstant Bernoulli polynomials:

B1(x) = x − 1

2

B2(x) = x2 − x + 1

6
= −x(1 − x) + 1

6

B3(x) = x3 − 3x2

2
+ x

2
= −x (1 − x)

(
x − 1

2

)

B4(x) = x4 − 2x3 + x2 − 1

30
= (

x − x2
)2 − 1

30

B5(x) = x5 − 5x4

2
+ 5x3

3
− x

6
= −

[
1

3
+ x(1 − x)

]
B3(x) (14)

B6(x) = x6 − 3x5 + 5x4

2
− x2

2
+ 1

42
= − (x − x2

)2
[

1

2
+ x(1 − x)

]
+ 1

42

B7(x) = x7 − 7x6

2
+ 7x5

2
− 7x3

6
+ x

6
=
[

1

3
+ x(1 − x) (1 + x(1 − x))

]
B3(x)

B8(x) = x8 − 4x7 + 14x6

3
− 7x4

3
+ 2x2

3
− 1

30

= (
x − x2

)2
[

2

3
+ x(1 − x)

(
4

3
+ x(1 − x)

)]
− 1

30
.

The numbers Bk := Bk(0), k = 0, 1, 2, . . . are called Bernoulli coefficients; from (14)
we read

B1 = −1

2
, B2 = 1

6
, B3 = B5 = B7 = 0, B4 = B8 = − 1

30
, B6 = 1

42
. (15)

Graphs of several Bk(t) and Pk(t) are shown in FIGURES 1 and 2.

THEOREM 1. (BASIC EULER–MACLAURIN FORMULA OF ORDER p) For any in-
tegers n, p ≥ 1 and any function f ∈ C p[a, b],

n−1∑
i=0

f (a + ih) h −
∫ b

a
f (x) dx =

p∑
j=1

h j Bj

j !
[

f ( j−1)(x)
]b

a
+ rp(a, b, n), (16a)



VOL. 74, NO. 2, APRIL 2001 115

where Bj are Bernoulli coefficients, h = (b − a)/n, and rp(a, b, n) is the remainder
of order p given by the formula

rp(a, b, n) = −h p

p!
∫ b

a
Pp

(
a − x

h

)
f (p)(x) dx, (16b)

where Pp is the p-th Bernoulli periodic function.

k=2

0.5 1-0.08

0.2 k=4

0.5 1
-0.04

0.04 k=6

0.5 1
-0.04

0.04

k=3

0.5 1
-0.06

0.06 k=5

0.5 1
-0.06

0.06 k=7

0.5 1
-0.06

0.06

Figure 1 Bernoulli polynomials

k=3

-1 1 2
-0.05

0.05 k=4
-1 1 2

-0.04

0.05

k=1

-1 1 2
-0.5

0.5 k=2

-1 1 2
-0.15

0.20

Figure 2 Bernoulli periodic functions

We arrive at the main result by replacing in (10) the functions vk by Bk and wk by
Pk .

Formula (16a) gives the difference between a Riemann sum and the integral of a
function f in terms of its derivatives at the end points of the interval of integration. (We
note that it can be shown quite easily that in (16a), all the Bj with odd j ≥ 3 actually
vanish. However, for more general E–M formulas the situation is quite different; see
the remarks at the end of this article.) Formulas (16b) and (13) imply a rough estimate
for the remainder. If µp := max

0≤x≤1

∣∣Bp(x)
∣∣, then

∣∣rp(a, b, n)
∣∣ ≤ µp

h p

p!
∫ b

a

∣∣ f (p)(x)
∣∣ dx . (17)

For elementary applications of the E–M formula, we need some of the numbers µp.
Equations (14) imply some basic estimates:

µ1 = 1

2
; µ2 = 1

6
; µ4 = µ8 = 1

30
; µ6 = 1

42
;

µ3 <
1

20
; µ5 <

1

35
; µ7 <

1

30
. (18)

Using µ6, for instance, we get

|r6(a, b, n)| ≤ h6

30240

∫ b

a

∣∣ f (6)(x)
∣∣ dx ≤ M(b − a)7

30240 n6
, (19)

where M = max
a≤x≤b

∣∣ f (6)(x)
∣∣.



116 MATHEMATICS MAGAZINE

Applications of the Euler–Maclaurin formula

Numerical integration Formulas (16a) and (16b) constitute a simple and useful
method of numerical integration, especially if f has easily computable derivatives
through the pth order. From (16a) and (15) we read

∫ b

a
f (x) dx = h

2
[ f (a) + f (b)] + h

n−1∑
i=1

f (a + ih)

−
p∑

j=2

h j Bj

j !
[

f ( j−1)(x)
]b

a
− rp(a, b, n).

This formula, together with (17) and (18), represents a good tool for numerical inte-
gration. It becomes considerably simpler in the case that f (k)(a) = f (k)(b) for k even
and less than p. (Note that Bj = 0 for odd j ≥ 3.) This happens, for instance, when f
is periodic with period b − a ([5, p. 137]).

Let us take p = 4 in the preceding formula. Then (15) and (16b) give

∫ b

a
f (x) dx = h

2
[ f (a) + f (b)] + h

n−1∑
i=1

f (a + ih) − h2

12

[
f ′(b) − f ′(a)

]−

− h4 B4

4!
[

f (3)(x)
]b

a
+ h4

4!
∫ b

a
P4

(
a − x

h

)
f (4)(x) dx .

Substituting x = a + th and writing b = a + nh, we can combine the last two sum-
mands:

−h4 B4

4!
[

f (3)(x)
]b

a
+ h4

4!
∫ b

a
P4

(
a − x

h

)
f (4)(x) dx

= h4

4!
∫ b

a

[
P4

(
a − x

h

)
− B4

]
f (4)(x) dx

= h5

4!
∫ n

0
[P4 (−t) − B4] f (4)(a + th) dt

= h5

4! f (4)(ξ)

∫ n

0
[P4 (−t) − B4] dt

= h5

4! f (4)(ξ) · (−nB4)

= − B4

4!
(b − a)5

n4
f (4)(ξ)

at some ξ ∈ [a, b]. The third equality uses the mean value theorem. Namely, by (14),
B4 (x) − B4 = (

x − x2
)2 ≥ 0, so, by (13) the difference P4 (x) − B4 is nonnegative

as well. The fourth equation follows from the fact that
∫ n

0 P4 (−t) dt = 0, according
to (13) and (12). So we get Hermite’s integration formula:

∫ b

a
f (x) dx = s(a, b, n) + r(a, b, n), (20a)
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where

s(a, b, n) = h

2
[ f (a) + f (b)] + h

n−1∑
i=1

f (a + ih) − h2

12

[
f ′(b) − f ′(a)

]
(20b)

and, by (15),

r(a, b, n) = (b − a)5

720
f (4)(ξ) · n−4 (20c)

for some ξ ∈ [a, b]. This remainder is about one-fourth that for Simpson’s rule; the
advantage is even greater if f ′(b) = f ′(a).

Example 2. To compute I = ∫ 2
0 e−x2

dx approximately, we put a = 0, b = 2,

f (x) := e−x2
, to get f ′(x) ≡ −2xe−x2

and f (4)(x) ≡ 4e−x2
(4x4 − 12x2 + 3), and

evaluate

M = max
{∣∣ f (4)(x)

∣∣ : 0 ≤ x ≤ 2
} = max

{∣∣4e−t
(
4t2 − 12t + 3

)∣∣ : 0 ≤ t ≤ 4
} = 12.

So by (20c) we estimate

|r(0, 2, n)| ≤ 25

720
12 · n−4 = 8

15
n−4;

for example, |r(0, 2, 20)| ≤ 4 × 10−6. We calculate s(0, 2, 20) = 0.882081 + δ,
where 0 < δ < 10−6, and by (20a) find

I = 0.882081 + δ + r(0, 2, 20) = 0.882081 + 	,

where −4 × 10−6 < 	 ≤ 5 × 10−6. Thus I = 0.8820 . . . , correct to four places.

Numerical summation The E–M formula is also a notable tool for numerical
summation. Let m and n be integers satisfying 1 ≤ m ≤ n. Setting a = m, b = n,
and h = 1 in (16a), we arrive at the basic E–M summation formula for a function
f ∈ C p[1,∞):

n−1∑
k=m

f (k) =
∫ n

m
f (x) dx +

p∑
j=1

Bj

j !
[

f ( j−1)(x)
]n

m
+ ρp(m, n). (21a)

By (16b) and (13) the remainder is given by

ρp(m, n) := rp(m, n, n − m) = − 1

p!
∫ n

m
Pp (−x) f (p)(x) dx, (21b)

and is estimated by

∣∣ρp(m, n)
∣∣ ≤ µp

p!
∫ n

m

∣∣ f (p)(x)
∣∣ dx, (21c)

where µp = max
0≤x≤1

∣∣Bp(x)
∣∣. Denoting

S(k) :=
k∑

i=1

f (i) and σp(k) :=
p∑

j=1

Bj

j ! f ( j−1)(k) (22)

for integers k, p ≥ 1, we can write (21a), with n ≥ m ≥ 1, as
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S(n) = S(m − 1) + f (n) + [
σp(n) − σp(m)

]+
∫ n

m
f (x) dx + ρp(m, n), (23)

where S(0) = 0 by definition.
This equality is the basic summation tool derived from the E–M formula. We can

use (23) to compute partial sums S(n) if the integral
∫ n

m f (x) dx is easily computable
and if we can adequately estimate the integral

∫ n
m

∣∣ f (p)(x)
∣∣ dx in (21c) for positive

integers m and n.
Let us work out the summation formula with p = 3. From (15) and (22), σ3(k) =

− f (k)/2 + f ′(k)/12. Now (23) implies

S(n) = S(m − 1) + f (m) + f (n)

2
+ f ′(n) − f ′(m)

12
+
∫ n

m
f (x) dx + ρ3(m, n),

(23a)
where, by (18) and (21c),

|ρ3(m, n)| ≤ 1

120

∫ n

m

∣∣ f ′′′(x)
∣∣ dx (23b)

for m ≤ n. (This explains the first formula used in the introduction.)

Euler’s constant for a function For a C p[1,∞) function f and any positive integer
n, we consider the difference γn := ∑n

k=1 f (k) − ∫ n
1 f (x) dx . By (23),

γn = f (n) + [
σp(n) − σp(1)

]+ ρp(1, n), n ≥ 1. (24a)

Let us assume from now on that finite limits λ0 := limn→∞ f (n) and λk :=
limn→∞ f (k)(n) exist for every positive integer k ≤ p − 1 (the convergence is consid-
ered only in the sense of sequences). Let us also suppose that

∫∞
1

∣∣ f (p)(x)
∣∣ dx < ∞.

By (21b) and (21c), this ensures the existence of the finite limit

ρp(m,∞) := lim
n→∞ ρp(m, n) = − 1

p!
∫ ∞

m
Pp(−x) f (p)(x) dx (24b)

for every integer m ≥ 1. Our assumptions imply, according to (24a), that the limit
γ := limn→∞ γn (called Euler’s constant for the function f ) exists and satisfies the
equality

γ = λ0 + [
σp(∞) − σp(1)

]+ ρp(1,∞), (24c)

where

σp(∞) :=
p∑

j=1

Bjλ j−1

j ! .

(As Bj = 0 for odd j ≥ 3, we could suppose above that limit λk exists only for k = 0
and all odd k ≤ p − 1.) Comparing (24a) and (24c), we obtain, for any integer n ≥ 1,

γ = γn + [λ0 − f (n)] + [
σp(∞) − σp(n)

]+ δp(n), (25a)

where δp(n) = − 1
p!
∫∞

n Pp(−x) f (p)(x) dx . Now (13) implies that

∣∣δp(n)
∣∣ ≤ µp

p!
∫ ∞

n

∣∣ f (p)(x)
∣∣ dx, (25b)

when µp = max
0≤x≤1

∣∣Bp(x)
∣∣.
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Now (25a) and (25b) enable us to compute the Euler’s constant γ for a function
f ; knowing its numerical value, we can compute partial sums S(n). Namely, since
γn := S(n) − ∫ n

1 f (x) dx , formula (25a) implies that, for n ≥ 1,

S(n) = γ +
∫ n

1
f (x) dx + [ f (n) − λ0] + [

σp(n) − σp(∞)
]− δp(n). (26)

Example 3. To compute the Euler–Mascheroni constant γ ∗, and to estimate the
harmonic sum Hn := ∑n

k=1 1/k we use in (25a) the sum σ3(n) = −1/2n − 1/12n2

and limits λk = 0 for k ≥ 0; thus σ3(∞) = 0. Now from (25a) we obtain, for n ≥ 1,

γ ∗ = (Hn − ln n) − 1

2n
+ 1

12n2
+ δ3(n). (27a)

Using (25b) and (18) we estimate

|δ3(n)| ≤ µ3

3!
∫ ∞

n

∣∣ f ′′′(x)
∣∣ dx < −1/20

6

[
f ′′(x)

]∞
n

= 1

120
· 2n−3 = 1

60n3
. (27b)

(A more sophisticated approach results in the better estimate −1/64n4 ≤ δ3(n) ≤ 0.)
For example, |δ3(100)| < 1.7 × 10−8. Calculating Hn − ln n − 1/(2n) + 1/(12n2) at
n = 100 directly to nine places gives 0.577215664 . . . . Therefore

0.577215647 < γ ∗ < 0.577215682; (27c)

that is, γ ∗ = 0.577 215 6 . . . , correct to seven places. To get more correct places we
need only enlarge the parameter n or p in (25a). From (27a) and (27b) we obtain the
asymptotic estimates

γ ∗ + ln n + 1

2n
− 1

12n2
− 1

60n3
< Hn < γ ∗ + ln n + 1

2n
− 1

12n2
+ 1

60n3
, (28)

for n ≥ 1, which enable us to compute harmonic sums with high precision. For
example, H10001000 = γ ∗ + 3000 ln 10 + δ, where |δ| < 10−3000. According to (28)
and (27c) this means H10001000 = 6908.332 494 6 . . . , correct to seven places.

We remark that ln n = ∑n
k=2 ln k

k−1 by the telescoping method, so

γ ∗ = lim
n→∞

(
n∑

k=1

1

k
+

n∑
k=2

ln
k

k − 1

)
= 1 +

∞∑
k=2

g(k),

where g(x) = 1
x + ln x

x−1 . So we could also compute γ ∗ using the theorem below on
summation of convergent series. Because the k-th derivative g(k)(x) decreases to 0
faster than f (k)(x) as x → ∞, this method proves better than the previous one.

Formulas (25a) and (25b) are also of theoretical interest. They imply a theorem
comparing the convergence of a series

∑∞
k=1 f (k) and an integral

∫∞
1 f (x) dx . (This

theorem, known as the integral test, is considered in many analysis textbooks only for
monotone functions f .) More precisely, the definition of γn and formula (26) implies
the following result:

THEOREM 2. If f ∈ C p[1,∞),
∫∞

1

∣∣ f (p)(x)
∣∣ dx converges, and finite limits λ0 :=

limn→∞ f (n) and λk := limn→∞ f (k)(n) exist for all positive integers k ≤ p − 1, then

(i) The series
∑∞

k=1 f (k) converges if and only if the sequence n �→ ∫ n
1 f (x) dx con-

verges.



120 MATHEMATICS MAGAZINE

(ii) If the series
∑∞

k=1 f (k) converges, then λ0 = 0 and

∞∑
k=1

f (k) = γ + lim
n→∞

∫ n

1
f (x) dx

= S(m − 1) +
∫ ∞

m
f (x) dx + [

σp(∞) − σp(m)
]+ δp(m),

where
∣∣δp(m)

∣∣ ≤ µp

p!
∫∞

m

∣∣ f (p)(x)
∣∣ dx for m ≥ 1.

Example 4. From Theorem 2 we deduce easily that the series
∑∞

k=1(sin
√

k)/k and∑∞
k=1(sin

√
k)/

√
k converge, setting p = 1 for the first series and p = 2 for the sec-

ond. (Here we apply the comparison test for absolute convergence of improper inte-
grals. Note that the numerical computation of sums of these two series requires a larger
p, say p = 6 or p = 8. We leave details to the reader.)

Example 5. To compute ζ(3) = ∑∞
k=1 1/k3 we put p = 2 and f (x) := x−3.

From (22) and (15) we find σ2(n) = −1/2n3 − 1/4n4 and σ2(∞) = 0. Now part (ii)
of Theorem 2 gives

ζ(3) =
m−1∑
k=1

1

k3
+
∫ ∞

m

dx

x3
+ 1

2m3
+ 1

4m4
+ δ2(m),

where, for m ≥ 1,

|δ2(m)| ≤ µ2

2

∫ ∞

m

12

x5
dx = 1

4m4
.

This means

ζ(3) =
m−1∑
k=1

1

k3
+ 1

2m2
+ 1

2m3
+ 	(m),

where 0 ≤ 	(m) ≤ 1/
(
2m4

)
for m ≥ 2. Since, for example, 0 ≤ 	(20) < 4 × 10−6,

we compute

19∑
k=1

1

k3
+ 1

2 × 202
+ 1

2 × 203
= 1.202055 . . .

to obtain ζ(3) = 1.20205 . . . , correct to five places. For higher precision we need only
use higher values of m or p in (ii) of Theorem 2. (We could also compute ζ(3) by
means of Euler’s constant for the function f (x) = 1/x3, applying (ii) of Theorem 2.)

Remark 1 The more general E–M formula

h
n−1∑
i=0

f (a + (i + ω)h) −
∫ b

a
f (x) dx =

p∑
j=1

h j Bj (ω)

j !
[

f ( j−1)(x)
]b

a

− h p

p!
∫ b

a
Pp

(
ω − x − a

h

)
f (p)(x) dx,

for every ω ∈ [0, 1], can be deduced from (1) in the same way as was done for the
equality (16a). This E–M formula expresses the difference between the integral and
the Riemann integral sum for a uniform partition of [a, b] and the evaluation points
a + (i + ω)h, i = 0, 1, . . . , n − 1 (see, e.g., [6, pp. 51–54]).
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Remark 2 The Bernoulli coefficients Bk can be found by formal manipulation of the
formula Bk = (1 + B)k for k ≥ 2. The right side is meant to be expanded by the bino-
mial theorem and then each power B j is replaced by Bj . The Bernoulli polynomials
can be described by applying the same process to the expression Bk(x) = (x + B)k

for k ≥ 1. Thus, this second formula is to be read

Bk(x) =
k∑

j=0

(
k
j

)
Bk− j x

j ,

where the recursion

Bk = − 1

k + 1

k−1∑
j=0

(
k + 1

j

)
Bj

for k ≥ 1 follows formally from Bk+1 = (1 + B)k+1. (See [2, p. 266], [16, p. 87].)

Remark 3 By means of Fourier analysis we obtain the expansion

Pp(x)

p! = −2
∞∑

k=1

cos
(
2kπx − p π

2

)
(2kπ)p

,

valid for all real x and every integer p ≥ 2 [5, p. 135]. (At p = 1 this equality holds
for every noninteger x .) From this equality we read an estimate for the so-called
Bernoulli numbers b j := (−1) j+1 B2 j :

2
(2 j)!
(2π)2 j

< b j < 4
(2 j)!
(2π)2 j

,

which holds for all j ≥ 1. (Unfortunately, the name “Bernoulli numbers” is not stan-
dard in the literature.) This estimate has three consequences:

(a) Bernoulli coefficients alternate in sign, and are not bounded for even indices
(as (15) may have suggested). (See [8, p. 452].)

(b) We find µp = max
{∣∣Bp(x)

∣∣ : 0 ≤ x ≤ 1
}

< 4 (p!) (2π)−p; by (17), we estimate
the remainder in the E–M formula as follows:

∣∣rp(a, b, n)
∣∣ ≤ 4

(
h

2π

)p ∫ b

a

∣∣ f (p)(x)
∣∣ dx, p ≥ 1.

(c) The Bernoulli numbers increase very rapidly, so it is not possible, in general, to
set p = ∞ in the E–M formula. In fact, the series

∞∑
j=1

Bj

j !
[

f ( j−1)(b) − f ( j−1)(a)
]

turns out to diverge for almost all functions f (x) that occur in applications, re-
gardless of a and b [11, p. 525].
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Nobody alive has done more than Gardner to spread the understanding and ap-
preciation of mathematics, and to dispel superstition. Nobody has worked harder
or more steadily to defend and enlarge this little firelit clearing we hold in the
dark chittering forest of unreason.

—from John Derbyshire’s review of Martin Gardner’s Did Adam and Eve Have
Navels? in The New Criterion.


